skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liu, B"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Achieving precise alignment between textual instructions and generated images in text-to-image generation is a significant challenge, particularly in rendering written text within images. Sate-of-the-art models like Stable Diffusion 3 (SD3), Flux, and AuraFlow still struggle with accurate text depiction, resulting in misspelled or inconsistent text. We introduce a training-free method with minimal computational overhead that significantly enhances text rendering quality. Specifically, we introduce an overshooting sampler for pretrained rectified flow (RF) models, by alternating between over-simulating the learned ordinary differential equation (ODE) and reintroducing noise. Compared to the Euler sampler, the overshooting sampler effectively introduces an extra Langevin dynamics term that can help correct the compounding error from successive Euler steps and therefore improve the text rendering. However, when the overshooting strength is high, we observe over-smoothing artifacts on the generated images. To address this issue, we propose an Attention Modulated Overshooting sampler (AMO), which adaptively controls the strength of overshooting for each image patch according to their attention score with the text content. AMO demonstrates a 32.3% and 35.9% improvement in text rendering accuracy on SD3 and Flux without compromising overall image quality or increasing inference cost. 
    more » « less
    Free, publicly-accessible full text available May 3, 2026
  2. Knowledge distillation leverages a teacher model to improve the training of a student model. A persistent challenge is that a better teacher does not always yield a better student, to which a common mitigation is to use additional supervision from several “intermediate” teachers. One empirically validated variant of this principle is progressive distillation, where the student learns from successive intermediate checkpoints of the teacher. Using sparse parity as a sandbox, we identify an implicit curriculum as one mechanism through which progressive distillation accelerates the student’s learning. This curriculum is available only through the intermediate checkpoints but not the final converged one, and imparts both empirical acceleration and a provable sample complexity benefit to the student. We then extend our investigation to Transformers trained on probabilistic context-free grammars (PCFGs) and real-world pre-training datasets (Wikipedia and Books). Through probing the teacher model, we identify an analogous implicit curriculum where the model progressively learns features that capture longer context. Our theoretical and empirical findings on sparse parity, complemented by empirical observations on more complex tasks, highlight the benefit of progressive distillation via implicit curriculum across setups. 
    more » « less
    Free, publicly-accessible full text available April 24, 2026
  3. Free, publicly-accessible full text available July 1, 2026
  4. Free, publicly-accessible full text available May 1, 2026
  5. Free, publicly-accessible full text available November 6, 2025
  6. Free, publicly-accessible full text available September 1, 2026
  7. Free, publicly-accessible full text available November 1, 2025
  8. Transformer interpretability aims to understand the algorithm implemented by a learned Transformer by examining various aspects of the model, such as the weight matrices or the attention patterns. In this work, through a combination of theoretical results and carefully controlled experiments on synthetic data, we take a critical view of methods that exclusively focus on individual parts of the model, rather than consider the network as a whole. We consider a simple synthetic setup of learning a (bounded) Dyck language. Theoretically, we show that the set of models that (exactly or approximately) solve this task satisfy a structural characterization derived from ideas in formal languages (the pumping lemma). We use this characterization to show that the set of optima is qualitatively rich; in particular, the attention pattern of a single layer can be “nearly randomized”, while preserving the functionality of the network. We also show via extensive experiments that these constructions are not merely a theoretical artifact: even with severe constraints to the architecture of the model, vastly different solutions can be reached via standard training. Thus, interpretability claims based on inspecting individual heads or weight matrices in the Transformer can be misleading. 
    more » « less